Mammalian Non-CpG Methylation: Stem Cells and Beyond

نویسنده

  • Sara E. Pinney
چکیده

Although CpG dinucleotides remain the primary site for DNA methylation in mammals, there is emerging evidence that DNA methylation at non-CpG sites (CpA, CpT and CpC) is not only present in mammalian cells, but may play a unique role in the regulation of gene expression. For some time it has been known that non-CpG methylation is abundant in plants and present in mammalian embryonic stem cells, but non-CpG methylation was thought to be lost upon cell differentiation. However, recent publications have described a role for non-CpG methylation in adult mammalian somatic cells including the adult mammalian brain, skeletal muscle, and hematopoietic cells and new interest in this field has been stimulated by the availability of high throughput sequencing techniques that can accurately measure this epigenetic modification. Genome wide assays indicate that non-CpG methylation is negligible in human fetal brain, but abundant in human adult brain tissue. Genome wide measurement of non-CpG methylation coupled with RNA-Sequencing indicates that in the human adult brain non-CpG methylation levels are inversely proportional to the abundance of mRNA transcript at the associated gene. Additionally specific examples where alterations in non-CpG methylation lead to changes in gene expression have been described; in PGC1α in human skeletal muscle, IFN-γ in human T-cells and SYT11 in human brain, all of which contribute to the development of human disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-CpG methylation is prevalent in embryonic stem cells and may be mediated by DNA methyltransferase 3a.

Current evidence indicates that methylation of cytosine in mammalian DNA is restricted to both strands of the symmetrical sequence CpG, although there have been sporadic reports that sequences other than CpG may also be methylated. We have used a dual-labeling nearest neighbor technique and bisulphite genomic sequencing methods to investigate the nearest neighbors of 5-methylcytosine residues i...

متن کامل

Evaluation of Changes in Global DNA Methylation during Osteoblastic Differentiation of Mesenchymal Stem Cells: A Laboratory Study

Background and Objectives: Control processes in osteoblastic differentiation of mesenchymal stem cells are not yet fully understood. Epigenetic mechanisms, especially the methylation of CpG Islands in the promoter of genes, are considered as one of the most important control mechanisms in stem cell differentiation. In the process of differentiation, it is debated whether only the methylation of...

متن کامل

Maintenance of self-renewal ability of mouse embryonic stem cells in the absence of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b.

DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b cooperatively regulate cytosine methylation in CpG dinucleotides in mammalian genomes, providing an epigenetic basis for gene silencing and maintenance of genome integrity. Proper CpG methylation is required for the normal growth of various somatic cell types, indicating its essential role in the basic cellular function of mammalian cells. Previou...

متن کامل

Characterizing the strand-specific distribution of non-CpG methylation in human pluripotent cells

DNA methylation is an important defense and regulatory mechanism. In mammals, most DNA methylation occurs at CpG sites, and asymmetric non-CpG methylation has only been detected at appreciable levels in a few cell types. We are the first to systematically study the strand-specific distribution of non-CpG methylation. With the divide-and-compare strategy, we show that CHG and CHH methylation are...

متن کامل

Accumulation and loss of asymmetric non-CpG methylation during male germ-cell development

DNA methylation is a well-characterized epigenetic modification involved in gene regulation and transposon silencing in mammals. It mainly occurs on cytosines at CpG sites but methylation at non-CpG sites is frequently observed in embryonic stem cells, induced pluriotent stem cells, oocytes and the brain. The biological significance of non-CpG methylation is unknown. Here, we show that non-CpG ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2014